Policy for the evaluation of policies with offline data with modeled rewards per arm.

Usage

  bandit <- OfflineDirectMethodBandit(formula,
                                      data, k = NULL, d = NULL,
                                      unique = NULL, shared = NULL,
                                      randomize = TRUE)

Arguments

formula

formula (required). Format: y.context ~ z.choice | x1.context + x2.xontext + ... | r1.reward + r2.reward ... Here, r1.reward to rk.reward represent regression based precalculated rewards per arm. Adds an intercept to the context model by default. Exclude the intercept, by adding "0" or "-1" to the list of contextual features, as in: y.context ~ z.choice | x1.context + x2.xontext -1

data

data.table or data.frame; offline data source (required)

k

integer; number of arms (optional). Optionally used to reformat the formula defined x.context vector as a k x d matrix. When making use of such matrix formatted contexts, you need to define custom intercept(s) when and where needed in data.table or data.frame.

d

integer; number of contextual features (optional) Optionally used to reformat the formula defined x.context vector as a k x d matrix. When making use of such matrix formatted contexts, you need to define custom intercept(s) when and where needed in data.table or data.frame.

randomize

logical; randomize rows of data stream per simulation (optional, default: TRUE)

replacement

logical; sample with replacement (optional, default: FALSE)

replacement

logical; add jitter to contextual features (optional, default: FALSE)

unique

integer vector; index of disjoint features (optional)

shared

integer vector; index of shared features (optional)

Methods

new(formula, data, k = NULL, d = NULL, unique = NULL, shared = NULL, randomize = TRUE)

generates and instantializes a new OfflineDirectMethodBandit instance.

get_context(t)

argument:

  • t: integer, time step t.

returns a named list containing the current d x k dimensional matrix context$X, the number of arms context$k and the number of features context$d.

get_reward(t, context, action)

arguments:

  • t: integer, time step t.

  • context: list, containing the current context$X (d x k context matrix), context$k (number of arms) and context$d (number of context features) (as set by bandit).

  • action: list, containing action$choice (as set by policy).

returns a named list containing reward$reward and, where computable, reward$optimal (used by "oracle" policies and to calculate regret).

post_initialization()

Randomize offline data by shuffling the offline data.table before the start of each individual simulation when self$randomize is TRUE (default)

References

Agarwal, Alekh, et al. "Taming the monster: A fast and simple algorithm for contextual bandits." International Conference on Machine Learning. 2014.

See also

Core contextual classes: Bandit, Policy, Simulator, Agent, History, Plot

Bandit subclass examples: BasicBernoulliBandit, ContextualLogitBandit, OfflineDirectMethodBandit

Policy subclass examples: EpsilonGreedyPolicy, ContextualLinTSPolicy

Examples

if (FALSE) { library(contextual) library(data.table) # Import myocardial infection dataset url <- "http://d1ie9wlkzugsxr.cloudfront.net/data_propensity/myocardial_propensity.csv" data <- fread(url) simulations <- 50 horizon <- nrow(data) # arms always start at 1 data$trt <- data$trt + 1 # turn death into alive, making it a reward data$alive <- abs(data$death - 1) # Run regression per arm, predict outcomes, and save results, a column per arm f <- alive ~ age + male + risk + severity model_f <- function(arm) glm(f, data=data[trt==arm], family=binomial(link="logit"), y=FALSE, model=FALSE) arms <- sort(unique(data$trt)) model_arms <- lapply(arms, FUN = model_f) predict_arm <- function(model) predict(model, data, type = "response") r_data <- lapply(model_arms, FUN = predict_arm) r_data <- do.call(cbind, r_data) colnames(r_data) <- paste0("R", (1:max(arms))) # Bind data and model predictions data <- cbind(data,r_data) # Define Bandit f <- alive ~ trt | age + male + risk + severity | R1 + R2 # y ~ z | x | r bandit <- OfflineDirectMethodBandit$new(formula = f, data = data) # Define agents. agents <- list(Agent$new(LinUCBDisjointOptimizedPolicy$new(0.2), bandit, "LinUCB"), Agent$new(FixedPolicy$new(1), bandit, "Arm1"), Agent$new(FixedPolicy$new(2), bandit, "Arm2")) # Initialize the simulation. simulation <- Simulator$new(agents = agents, simulations = simulations, horizon = horizon) # Run the simulation. sim <- simulation$run() # plot the results plot(sim, type = "cumulative", regret = FALSE, rate = TRUE, legend_position = "bottomright") plot(sim, type = "arms", limit_agents = "LinUCB", legend_position = "topright") }