R/bandit_offline_direct_method.R
OfflineDirectMethodBandit.Rd
Policy for the evaluation of policies with offline data with modeled rewards per arm.
bandit <- OfflineDirectMethodBandit(formula, data, k = NULL, d = NULL, unique = NULL, shared = NULL, randomize = TRUE)
formula
formula (required).
Format: y.context ~ z.choice | x1.context + x2.xontext + ... | r1.reward + r2.reward ...
Here, r1.reward to rk.reward represent regression based precalculated rewards per arm.
Adds an intercept to the context model by default. Exclude the intercept, by adding "0" or "-1" to
the list of contextual features, as in: y.context ~ z.choice | x1.context + x2.xontext -1
data
data.table or data.frame; offline data source (required)
k
integer; number of arms (optional). Optionally used to reformat the formula defined x.context vector
as a k x d
matrix. When making use of such matrix formatted contexts, you need to define custom
intercept(s) when and where needed in data.table or data.frame.
d
integer; number of contextual features (optional) Optionally used to reformat the formula defined
x.context vector as a k x d
matrix. When making use of such matrix formatted contexts, you need
to define custom intercept(s) when and where needed in data.table or data.frame.
randomize
logical; randomize rows of data stream per simulation (optional, default: TRUE)
replacement
logical; sample with replacement (optional, default: FALSE)
replacement
logical; add jitter to contextual features (optional, default: FALSE)
unique
integer vector; index of disjoint features (optional)
shared
integer vector; index of shared features (optional)
new(formula, data, k = NULL, d = NULL, unique = NULL, shared = NULL, randomize = TRUE)
generates and instantializes a new OfflineDirectMethodBandit
instance.
get_context(t)
argument:
t
: integer, time step t
.
list
containing the current d x k
dimensional matrix context$X
,
the number of arms context$k
and the number of features context$d
.get_reward(t, context, action)
arguments:
t
: integer, time step t
.
context
: list, containing the current context$X
(d x k context matrix),
context$k
(number of arms) and context$d
(number of context features)
(as set by bandit
).
action
: list, containing action$choice
(as set by policy
).
list
containing reward$reward
and, where computable,
reward$optimal
(used by "oracle" policies and to calculate regret).post_initialization()
Randomize offline data by shuffling the offline data.table before the start of each individual simulation when self$randomize is TRUE (default)
Agarwal, Alekh, et al. "Taming the monster: A fast and simple algorithm for contextual bandits." International Conference on Machine Learning. 2014.
Core contextual classes: Bandit
, Policy
, Simulator
,
Agent
, History
, Plot
Bandit subclass examples: BasicBernoulliBandit
, ContextualLogitBandit
,
OfflineDirectMethodBandit
Policy subclass examples: EpsilonGreedyPolicy
, ContextualLinTSPolicy
if (FALSE) { library(contextual) library(data.table) # Import myocardial infection dataset url <- "http://d1ie9wlkzugsxr.cloudfront.net/data_propensity/myocardial_propensity.csv" data <- fread(url) simulations <- 50 horizon <- nrow(data) # arms always start at 1 data$trt <- data$trt + 1 # turn death into alive, making it a reward data$alive <- abs(data$death - 1) # Run regression per arm, predict outcomes, and save results, a column per arm f <- alive ~ age + male + risk + severity model_f <- function(arm) glm(f, data=data[trt==arm], family=binomial(link="logit"), y=FALSE, model=FALSE) arms <- sort(unique(data$trt)) model_arms <- lapply(arms, FUN = model_f) predict_arm <- function(model) predict(model, data, type = "response") r_data <- lapply(model_arms, FUN = predict_arm) r_data <- do.call(cbind, r_data) colnames(r_data) <- paste0("R", (1:max(arms))) # Bind data and model predictions data <- cbind(data,r_data) # Define Bandit f <- alive ~ trt | age + male + risk + severity | R1 + R2 # y ~ z | x | r bandit <- OfflineDirectMethodBandit$new(formula = f, data = data) # Define agents. agents <- list(Agent$new(LinUCBDisjointOptimizedPolicy$new(0.2), bandit, "LinUCB"), Agent$new(FixedPolicy$new(1), bandit, "Arm1"), Agent$new(FixedPolicy$new(2), bandit, "Arm2")) # Initialize the simulation. simulation <- Simulator$new(agents = agents, simulations = simulations, horizon = horizon) # Run the simulation. sim <- simulation$run() # plot the results plot(sim, type = "cumulative", regret = FALSE, rate = TRUE, legend_position = "bottomright") plot(sim, type = "arms", limit_agents = "LinUCB", legend_position = "topright") }