A function based continuum multi-armed bandit where arms are chosen from a subset of the real line and the mean rewards are assumed to be a continuous function of the arms.
bandit <- ContinuumBandit$new(FUN)
continuous function.
new(FUN)generates and instantializes a new ContinuumBandit instance.
get_context(t)argument:
t: integer, time step t.
list
containing the current d x k dimensional matrix context$X,
the number of arms context$k and the number of features context$d.get_reward(t, context, action)arguments:
t: integer, time step t.
context: list, containing the current context$X (d x k context matrix),
context$k (number of arms) and context$d (number of context features)
(as set by bandit).
action: list, containing action$choice (as set by policy).
list containing reward$reward and, where computable,
reward$optimal (used by "oracle" policies and to calculate regret).Core contextual classes: Bandit, Policy, Simulator,
Agent, History, Plot
Bandit subclass examples: BasicBernoulliBandit, ContextualLogitBandit,
OfflineReplayEvaluatorBandit
Policy subclass examples: EpsilonGreedyPolicy, ContextualLinTSPolicy
if (FALSE) { horizon <- 1500 simulations <- 100 continuous_arms <- function(x) { -0.1*(x - 5) ^ 2 + 3.5 + rnorm(length(x),0,0.4) } int_time <- 100 amplitude <- 0.2 learn_rate <- 0.3 omega <- 2*pi/int_time x0_start <- 2.0 policy <- LifPolicy$new(int_time, amplitude, learn_rate, omega, x0_start) bandit <- ContinuumBandit$new(FUN = continuous_arms) agent <- Agent$new(policy,bandit) history <- Simulator$new( agents = agent, horizon = horizon, simulations = simulations, save_theta = TRUE )$run() plot(history, type = "average", regret = FALSE) }