Samples from Wheel bandit game.
The Wheel bandit game offers an artificial problem where the need for exploration is smoothly parameterized
through exploration parameter delta.
In the game, contexts are sampled uniformly at random from a unit circle divided into one central and four
edge areas for a total of k = 5 possible actions. The central area offers a random normal sampled
reward independent of the context, in contrast to the outer areas which offer a random normal sampled
reward dependent on a d = 2 dimensional context.
For more information, see https://arxiv.org/abs/1802.09127.
bandit <- ContextualWheelBandit$new(delta, mean_v, std_v, mu_large, std_large)
deltanumeric; exploration parameter: high reward in one region if norm above delta.
mean_vnumeric vector; mean reward for each action if context norm is below delta.
std_vnumeric vector; gaussian reward sd for each action if context norm is below delta.
mu_largenumeric; mean reward for optimal action if context norm is above delta.
std_largenumeric; standard deviation of the reward for optimal action if context norm is above delta.
new(delta, mean_v, std_v, mu_large, std_large)generates and instantializes a
new ContextualWheelBandit instance.
get_context(t)argument:
t: integer, time step t.
list
containing the current d x k dimensional matrix context$X,
the number of arms context$k and the number of features context$d.get_reward(t, context, action)arguments:
t: integer, time step t.
context: list, containing the current context$X (d x k context matrix),
context$k (number of arms) and context$d (number of context features)
(as set by bandit).
action: list, containing action$choice (as set by policy).
list containing reward$reward and, where computable,
reward$optimal (used by "oracle" policies and to calculate regret).Riquelme, C., Tucker, G., & Snoek, J. (2018). Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. arXiv preprint arXiv:1802.09127.
Implementation follows https://github.com/tensorflow/models/tree/master/research/deep_contextual_bandits
Core contextual classes: Bandit, Policy, Simulator,
Agent, History, Plot
Bandit subclass examples: BasicBernoulliBandit, ContextualLogitBandit,
OfflineReplayEvaluatorBandit
Policy subclass examples: EpsilonGreedyPolicy, ContextualLinTSPolicy
if (FALSE) { horizon <- 1000L simulations <- 10L delta <- 0.95 num_actions <- 5 context_dim <- 2 mean_v <- c(1.0, 1.0, 1.0, 1.0, 1.2) std_v <- c(0.05, 0.05, 0.05, 0.05, 0.05) mu_large <- 50 std_large <- 0.01 bandit <- ContextualWheelBandit$new(delta, mean_v, std_v, mu_large, std_large) agents <- list(Agent$new(UCB1Policy$new(), bandit), Agent$new(LinUCBDisjointOptimizedPolicy$new(0.6), bandit)) simulation <- Simulator$new(agents, horizon, simulations) history <- simulation$run() plot(history, type = "cumulative", regret = FALSE, rate = TRUE, legend_position = "bottomright") }