R/policy_cmab_lin_epsilon_greedy.R
ContextualEpsilonGreedyPolicy.Rd
Policy: ContextualEpsilonGreedyPolicy with unique linear models
policy <- ContextualEpsilonGreedyPolicy(epsilon = 0.1)
epsilon
double, a positive real value R+
A
d*d identity matrix
b
a zero vector of length d
new(epsilon = 0.1)
Generates a new ContextualEpsilonGreedyPolicy
object.
Arguments are defined in the Argument section above.
set_parameters()
each policy needs to assign the parameters it wants to keep track of
to list self$theta_to_arms
that has to be defined in set_parameters()
's body.
The parameters defined here can later be accessed by arm index in the following way:
theta[[index_of_arm]]$parameter_name
get_action(context)
here, a policy decides which arm to choose, based on the current values of its parameters and, potentially, the current context.
set_reward(reward, context)
in set_reward(reward, context)
, a policy updates its parameter values
based on the reward received, and, potentially, the current context.
Core contextual classes: Bandit
, Policy
, Simulator
,
Agent
, History
, Plot
Bandit subclass examples: BasicBernoulliBandit
, ContextualLogitBandit
,
OfflineReplayEvaluatorBandit
Policy subclass examples: EpsilonGreedyPolicy
, ContextualLinTSPolicy