R/bandit_cmab_bernoulli.R
ContextualBernoulliBandit.RdContextual Bernoulli multi-armed bandit where at least one context feature is active at a time.
bandit <- ContextualBernoulliBandit$new(weights)
weightsnumeric matrix; d x k matrix with probabilities of reward for d contextual features
per k arms
new(weights)generates and initializes a new ContextualBernoulliBandit
instance.
get_context(t)argument:
t: integer, time step t.
list
containing the current d x k dimensional matrix context$X,
the number of arms context$k and the number of features context$d.get_reward(t, context, action)arguments:
t: integer, time step t.
context: list, containing the current context$X (d x k context matrix),
context$k (number of arms) and context$d (number of context features)
(as set by bandit).
action: list, containing action$choice (as set by policy).
list containing reward$reward and, where computable,
reward$optimal (used by "oracle" policies and to calculate regret).Core contextual classes: Bandit, Policy, Simulator,
Agent, History, Plot
Bandit subclass examples: ContextualBernoulliBandit, ContextualLogitBandit,
OfflineReplayEvaluatorBandit
Policy subclass examples: EpsilonGreedyPolicy, ContextualLinTSPolicy
if (FALSE) { library(contextual) horizon <- 100 sims <- 100 policy <- LinUCBDisjointOptimizedPolicy$new(alpha = 0.9) weights <- matrix( c(0.4, 0.2, 0.4, 0.3, 0.4, 0.3, 0.1, 0.8, 0.1), nrow = 3, ncol = 3, byrow = TRUE) bandit <- ContextualBernoulliBandit$new(weights = weights) agent <- Agent$new(policy,bandit) history <- Simulator$new(agent, horizon, sims)$run() plot(history, type = "cumulative", regret = TRUE) }